Unveiling Novel Chaotropic Chromatography Method for Determination of Pralidoxime in Nerve Agent Antidote Autoinjectors

Author:

Shin Bohyun1,Kim Hyung-seung2,Lee Ji-Youn1ORCID,Seo Sumin1,Jeong Cho Hee1,Bae Eunbin1,Kim Jiyu1,Lee Hyojeong1,Lee Donghee1,Lee Dong-Kyu1ORCID,Han Sang Beom1ORCID

Affiliation:

1. Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

2. Division of Forensic Toxicology and Chemistry, Defense Institute of Forensic Science, Ministry of National Defense, Seoul 04383, Republic of Korea

Abstract

Pralidoxime chloride, a highly hydrophilic antidote, cannot be effectively separated by reverse-phase high-performance liquid chromatography (RP-HPLC), unless the mobile-phase composition is varied. However, the use of ion-pairing reagents for pralidoxime separation is hindered by the persistent contamination of the stationary phase or chromatography system inside the HPLC system. Thus, this study aimed to develop a simple, rapid, and robust method based on RP-HPLC to determine pralidoxime chloride in antidote autoinjectors using a chaotropic salt as the mobile-phase additive. The use of UV detection at 270 nm allowed for the simultaneous detection of pralidoxime chloride and the internal standard, pyridine-2-aldoxime. The addition of chaotropic salts (NaPF6, NaBF4, and NaClO4) and an ionic liquid ([EMIM]PF6) increased the retention time of pralidoxime chloride. Among them, NaPF6 exhibited the highest capacity factor in the reverse-phase C18 column. Increasing the salt concentration increased the capacity factor and the number of theoretical plates. Analytical method validation was performed to assess the linearity, accuracy, precision, recovery, and repeatability, according to the Ministry of Food and Drug Safety guidelines. Additionally, this newly developed method exhibits an adequate separation capability, making it a potential substitute for the current method employed in the United States/Korean Pharmacopoeia, and it ensures the necessary durability to maintain the robustness and reliability of the analytical system.

Funder

Ministry of National Defense

Chung-Ang University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3