An Evaluation of the Relationship between Membrane Properties and the Fouling Mechanism Based on a Blocking Filtration Model

Author:

Katagiri Nobuyuki1ORCID,Uchida Takehiro1,Takahashi Hironori2,Iritani Eiji2

Affiliation:

1. Department of Environmental Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan

2. Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

Microfiltration plays an increasingly important role in various fields. Consequently, elucidating the mechanism of membrane fouling has emerged as a pivotal issue that needs to be resolved. In this study, a blocking filtration model was employed to evaluate the effects of membrane properties on the fouling mechanism during the microfiltration of representative polysaccharides, namely sodium alginate, pectin, and xanthan gum. Microfiltration membranes composed of hydrophilic and hydrophobic PVDF, mixed cellulose ester, as well as hydrophilic and hydrophobic PTFE were used as filter media. The flux decline behavior was significantly affected by the membrane properties, with hydrophilic membranes exhibiting a slower decrease in filtration rate. The model analysis revealed a correlation between the blocking characteristic values and the membrane properties. Although the blocking index n showed membrane material dependence, the values of this parameter remained consistent across various filtration conditions, including the wettability of the membrane surface, solute concentration, and pressure (pectin: n = 1.86, 1.85, 1.50, and 1.50 for hydrophilic PVDF, hydrophobic PVDF, hydrophilic PTFE, and hydrophobic PTFE, respectively). The resistance coefficient k was influenced by the characteristics of the membrane surface; the k values of the hydrophobic membranes were higher than those of the hydrophilic ones (pectin: k = 0.00084, 0.00725, 0.00714, and 0.0384 s1−n/cm2−n for hydrophilic PVDF, hydrophobic PVDF, hydrophilic PTFE, and hydrophobic PTFE, respectively). The model calculations, based on the values of n and k, demonstrated a relatively good agreement with the experimental data.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Reference44 articles.

1. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point;Shah;Chemosphere,2024

2. Developments of blocking filtration model in membrane filtration;Iritani;KONA Powder Part. J.,2016

3. Principles of the mathematical treatment of constant-pressure filtration;Hermans;J. Soc. Chem. Ind.,1936

4. Structure and performance of filter media. II. Performance of filter media in liquid service;Grace;AIChE J.,1956

5. Constant pressure blocking filtration laws—Application to power-law non-Newtonian fluids;Hermia;Trans. IChemE,1982

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3