Green Stability Indicating Organic Solvent-Free HPLC Determination of Remdesivir in Substances and Pharmaceutical Dosage Forms

Author:

Ibrahim Adel EhabORCID,Deeb Sami ElORCID,Abdelhalim Emad Mahmoud,Al-Harrasi AhmedORCID,Sayed Rania Adel

Abstract

A green liquid chromatographic method is considered in this work to minimize the environmental impact of waste solvents. One important principle is to replace or eliminate the use of hazardous organic solvents. Organic impurities in any active pharmaceutical ingredient could arise either during the process of its synthesis, or as degradation products developed throughout the shelf-life. Remdesivir (RDS) is an antiviral drug, approved by the US Food and Drug Adminstration (-FDA), to treat SARS-Cov-2 virus during its pandemic crisis. We studied the stability of remdesivir against several degradation pathways using the organic solvent-free liquid chromatographic technique. Separation was performed on RP-C18 stationary phase using mixed-micellar mobile phase composed of a mixture of 0.025 M Brij-35, 0.1 M sodium lauryl sulfate (SLS), and 0.02 M disodium hydrogen phosphate, adjusted to pH 6.0. The mobile phase flow rate was 1 mL min−1, and detection was carried out at a wavelength of 244 nm. We profiled the impurities that originated in mild to drastic degradation conditions. The method was then validated according to International Conference of Harmonization (ICH) guidelines within a linearity range of 5–100 μg mL−1 and applied successfully for the determination of the drug in its marketed dosage form. A brief comparison was established with reported chromatographic methods, including a greenness assessment on two new metrics (GAPI and AGREE). This study is the first to be reported as eco-friendly, solvent-free, and stability indicating LC methodology for RDS determination and impurity profiling.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3