Development and Validation of Rapid RP-HPLC and Green Second-Derivative UV Spectroscopic Methods for Simultaneous Quantification of Metformin and Remogliflozin in Formulation Using Experimental Design

Author:

Attimarad MaheshORCID,Elgorashe Rafea Elamin Elgack,Subramaniam Rajasekaran,Islam Mohammed Monirul,Venugopala Katharigatta N.ORCID,Nagaraja SreeharshaORCID,Balgoname Abdulmalek Ahmed

Abstract

Recently, a new formulation containing metformin HCl (MFH) and remogliflozin etabonate (RGE) has been approved for the management of diabetes mellitus. However, only one analytical method has been reported for the simultaneous determination of both the analytes. Therefore, the current study was designed to develop simple UV derivative spectroscopic and rapid RP-HPLC methods for simultaneous determination of MFH and RGE. The chromatographic separation of MFH and RGE was performed using a monolithic C18 column with an optimized chromatographic conditions carried out by full factorial Box–Behnken design model. The spectroscopic technique was based on the determination of peak amplitude of second-order derivative UV spectra at zero crossings. Further, both the methods were validated and compared statistically using Student’s-t-test and F-test, and employed for the concurrent estimation of MFH and RGE in laboratory mixed solutions and formulations. Perturbation plots and response surface models showed the effect of chromatographic parameters and the final chromatographic condition was selected from 47 solutions suggested by the desirability function. Further, UV spectroscopic and HPLC procedures showed good linearity in the range of 1–24 µg/mL and 2–150 µg/mL for RGE and 2–30 µg/mL and 5–200 µg/mL for MFH, respectively. The average percent assay was found to be 99.51% and 99.80% for MFH and 99.60% and 100.07% for RGE by spectroscopic and HPLC methods, respectively. The proposed methods were simple, accurate, precise, and rapid. Therefore, they can be used for regular quality control of MFH and RGE formulations and dissolution studies as well.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3