Study of the Kinetics of Extraction Process for The Production of Hemp Inflorescences Extracts by Means of Conventional Maceration (CM) and Rapid Solid-Liquid Dynamic Extraction (RSLDE)

Author:

Gallo MonicaORCID,Formato AndreaORCID,Ciaravolo Martina,Formato Gaetano,Naviglio DanieleORCID

Abstract

In the present work, the kinetics of the extraction process from female inflorescences of Canapa sativa subsp. sativa var. sativa were studied, on the basis of determination of the content of cannabinoids: cannabidiolic acid (CBDA), Δ9-tetrahydrocannabinolic acid (THCA), cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), before and after decarboxylation in the oven, in order to evaluate the possible use of the hemp extract obtained in the food sector. Therefore, both conventional maceration (CM) and rapid solid-liquid dynamic extraction (RSLDE), also known as cyclically pressurized extraction (CPE), were carried out, using parts of the plant approximately of the same size. The alcoholic extracts thus obtained were analyzed by high-performance liquid chromatography (HPLC) in order to calculate the percentages of cannabinoids present in the inflorescences and thus be able to evaluate the degree of decarboxylation. Furthermore, the extracts were dried to calculate the percentage of solid material present in it, that was made mainly by cannabinoids. The amount of substance extracted from the inflorescences was about 10% (w/w), for both cases considered. Therefore, the extraction yield was the same in the two cases examined and the final qualities were almost identical. However, the extraction times were significantly different. In fact, the maceration of hemp inflorescences in ethyl alcohol was completed in no less than 24 h, while with the RSLDE the extraction was completed in only 4 h. Finally, for a better understanding of the extraction process with cyclically pressurized extraction, a numerical simulation was carried out which allowed to better evaluate the influence of extractive parameters.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3