Sustainable and Rapid Determination of Two Halogenated Pesticides in a Commercial Formulation by Solid Phase Microextraction and Liquid Phase Chemical Ionization Mass Spectrometry

Author:

Marittimo Nicole1,Grasselli Genny1,Arigò Adriana1,Famiglini Giorgio1ORCID,Palma Pierangela12,Saeed Mansoor3,Perry Simon3,Navarro Pablo3,Clarke Phil3,Brittin Mark3ORCID,Cappiello Achille12

Affiliation:

1. Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, Italy

2. Department of Chemistry, Vancouver Island University, B360-R306, 900 Fifth St., Nanaimo, BC V9R 5S5, Canada

3. Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK

Abstract

This work presents a sustainable and rapid method for halogenated pesticide analysis without chromatographic separation. The system is composed of a microfluidic open interface (MOI) for solid-phase microextraction (SPME) liquid phase desorption, connected to a liquid electron ionization mass spectrometry interface (LEI-MS). Either a triple quadrupole mass spectrometer (QQQ-MS/MS, (low-resolution) or a quadrupole-time-of-flight tandem MS (QTOF-MS/MS, high-resolution) were employed, each operating in negative chemical ionization (NCI) conditions. The flow rate used (100 µL/min) to rapidly empty the MOI chamber (approximately 2.5 µL) is reduced to the working flow rate of the LEI interface (500 nL/min) by a passive flow splitter (PFS). NCI is an appropriate ionization technique for electrophilic compounds, increasing specificity and reducing background noise. Two halogenated pesticides, dicamba and tefluthrin, were extracted simultaneously from a commercial formulation matrix (CF) using a C18 fiber by direct immersion (3 min under vortex agitation). Analyte desorption occurred in static conditions inside MOI filled with acidified acetonitrile (ACN) (0.2% phosphoric acid, PA). Extraction and desorption steps were optimized to increase efficiency and accelerate the process. No chromatographic separation was involved; therefore, the system fully exploited MS/MS selectivity and HRMS accuracy demonstrating good linearity, repeatability and limits of detection (LODs) and limits of quantification (LOQs) in the pg/mL range (50 and 500 pg/mL, respectively). Low-resolution experiments showed that matrix effects (ME) did not affect the results. The fast workflow (5 min) makes the system suitable for high-throughput analysis observing the principles of green analytical chemistry (GAC).

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3