Multivariate Simultaneous Determination of Some PAHs in Persian Gulf Oil-Contaminated Algae and Water Samples Using Miniaturized Triton X-100-Mediated Fe3O4 Nanoadsorbent and UV-Vis Detection

Author:

Tarighat Maryam Abbasi1,Behroozi Ameneh1,Abdi Gholamreza2ORCID,Proestos Charalampos3ORCID

Affiliation:

1. Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran

2. Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran

3. Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 157 84 Athens, Greece

Abstract

This research shows the development of a miniaturized solid-phase extraction method with UV-Vis detection for simultaneous determination of dibenzofuran, fluoranthene and phenanthrene using chemometrics approaches. After synthesis of Fe3O4 nanoparticles (Fe3O4 NPs), the surface of the nanoparticles was modified by Triton X100 coating. The influence of extraction solvent and volume, concentration of Triton X100, extraction time, and sample pH were studied and optimized. Due to high spectral overlapping, resolving ternary mixtures for simultaneous determination of targets with classical analytical methods is impossible. Therefore, the recorded UV-Vis spectra were transformed using continuous wavelet transform and then subjected to artificial neural networks (ANNs). The Db4 mother wavelet was used as the better mother wavelet. For simultaneous detection of analytes, a comparison of feed-forward back-propagation and radial basis function networks was accomplished. The calibration graphs showed linearity in the ranges of 2.4–250 ng mL−1, 50–3750 ng mL−1, and 48–5000 ng mL−1 with a limit of detection of 0.58, 9.5 ng mL−1, and 12.5 ng mL−1 under optimal conditions for phenanthrene, fluoranthene, and dibenzofuran, respectively. The limit of quantitation was achieved at 3.52 ng mL−1, 16.35 ng mL−1, and 31.3 ng mL−1 for phenanthrene, fluoranthene and dibenzofuran, respectively. The method involving TX-100-coated Fe3O4 NPs in a liquid sample phase for analyte extraction, followed by ethanol desorption and UV-Vis detection, was successfully applied for the determination of polycyclic aromatic hydrocarbons in oil-field water and algae samples.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3