Monitoring of Gold Biodistribution from Nanoparticles Using a HPLC-Visible Method

Author:

Chaigneau ThomasORCID,Pallotta ArnaudORCID,Benaddi Fatima Zahra,Sancey LucieORCID,Chakir Said,Boudier ArianeORCID,Clarot Igor

Abstract

There is intensive research using gold nanoparticles for biomedical purposes, which have many advantages such as ease of synthesis and high reactivity. Their possible small size (<10 nm) can lead to the crossing of biological membranes and then to problematic dissemination and storage in organs that must be controlled and evaluated. In this work, a simple isocratic HPLC method was developed and validated to quantify the gold coming from nanoparticles in different biological samples. After a first carbonization step at 900 °C, the nanoparticles were oxidized by dibroma under acidic conditions, leading to tetrachloroaurate ions that could form ion pairs when adding rhodamine B. Finally, ion pairs were extracted and rhodamine B was evaluated to quantify the corresponding gold concentration by reversed-phase HPLC with visible detection. The method was validated for different organs (liver, spleen, lungs, kidneys, or brain) and fluids (plasma and urine) from rats and mice. Lastly, the developed method was used to evaluate the content of gold in organs and fluids after intravenous (IV) injection of nanoparticles.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3