PVA-Based MMMs for Ethanol Dehydration via Pervaporation: A Comparison Study between Graphene and Graphene Oxide

Author:

Zhan XiaORCID,Ge Rui,Gao Zhongyong,Gao Teng,Wang Luying,Li Jiding

Abstract

Two different types of 2D nanosheets, including hydrophobic graphene (GR) and hydrophilic graphene oxide (GO), were filled into poly (vinyl alcohol) (PVA) polymers to prepare mixed matrix membranes (MMMs) for ethanol dehydration via pervaporation. The relationship between the physical/chemical properties of graphene and pervaporation performance of MMMs was investigated by a comparison of GR/PVA and GO/PVA MMMs in microstructure and PV performance. The incorporation of GO nanosheets into PVA reduced PVA crystallinity and enhanced the membrane hydrophilicity, while the incorporation of GR into PVA led to the opposite results. The incorporation of GR/GO into PVA depressed the PVA membrane swelling degree, and the incorporation of GR showed a more obvious depression effect. GR/PVA MMMs showed a much higher separation factor than GO/PVA MMMs, while they exhibited a much lower permeation flux than GO/PVA MMMs and pristine PVA membranes. The huge difference in microstructure and performance between GO/PVA and GR/PVA MMMs was strongly associated with the oxygen-containing groups on graphene lamellae. The higher permeation flux of GO/PVA MMMs was ascribed to the facilitated transport of water molecules induced by oxygen-containing groups and exclusive channels provided by GO lamellae, while the much lower permeation flux and higher separation factor GR/PVA MMMs was resulted from the smaller GR interplanar spacing (0.33 nm) and hydrophobicity as well as barrier effect of GR lamellae on the sorption and diffusion of water molecules. It was presumed that graphene intercalated with an appropriate number of oxygen-containing groups might be a good choice to prepare PVA-based MMMs for ethanol dehydration, which would combine the advantages of GR’s high interlayer diffusion selectivity and GO’s high permeation properties. The investigation might open a door to achieve both of high permeation flux and separation factor of PVA-based MMMs by tuning the microstructure of graphene.

Funder

Beijing Natural Science Foundation Commission-Beijing Municipal Education Commission Joint Foundation, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3