CDE++: Learning Categorical Data Embedding by Enhancing Heterogeneous Feature Value Coupling Relationships

Author:

Dong BinORCID,Jian Songlei,Zuo Ke

Abstract

Categorical data are ubiquitous in machine learning tasks, and the representation of categorical data plays an important role in the learning performance. The heterogeneous coupling relationships between features and feature values reflect the characteristics of the real-world categorical data which need to be captured in the representations. The paper proposes an enhanced categorical data embedding method, i.e., CDE++, which captures the heterogeneous feature value coupling relationships into the representations. Based on information theory and the hierarchical couplings defined in our previous work CDE (Categorical Data Embedding by learning hierarchical value coupling), CDE++ adopts mutual information and margin entropy to capture feature couplings and designs a hybrid clustering strategy to capture multiple types of feature value clusters. Moreover, Autoencoder is used to learn non-linear couplings between features and value clusters. The categorical data embeddings generated by CDE++ are low-dimensional numerical vectors which are directly applied to clustering and classification and achieve the best performance comparing with other categorical representation learning methods. Parameter sensitivity and scalability tests are also conducted to demonstrate the superiority of CDE++.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3