Arm Posture Changes and Influences on Hand Controller Interaction Evaluation in Virtual Reality

Author:

Lou XiaolongORCID,Zhao Qinping,Shi Yan,Hansen PrebenORCID

Abstract

In virtual reality (VR) applications, hand-controller interaction is largely limited by the biomechanical structure of the arm and its kinematical features. Earlier research revealed that different arm postures generate distinct arm fatigue levels in mid-air operational tasks; however, how they impact interaction performance, e.g., accuracy of target grasp and manipulation, has been less investigated. To fill this gap in knowledge, we conducted an empirical experiment in which thirty participants were recruited to complete a series of target acquisition tasks in a specifically designed VR application. Results show that (1) a bent arm posture resulted in a higher interaction accuracy than a stretched arm posture; (2) a downward arm posture interacted more accurately than an upraised arm posture; since two arms are bilaterally symmetric, (3) either selected arm interacted more accurately on the corresponding side than on the opposite side; and (4) the user-preferred or dominant arm interacted more persistently than the non-dominant one, though two arms generated little difference in interaction accuracy. Implications and suggestions are discussed for designing more efficient and user-satisfying interactive spaces in VR.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Philosophy & Social Science Foundation of Zhejiang Province

State Key Laboratory of Virtual Reality Technology and Systems

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3