Abstract
In virtual reality (VR) applications, hand-controller interaction is largely limited by the biomechanical structure of the arm and its kinematical features. Earlier research revealed that different arm postures generate distinct arm fatigue levels in mid-air operational tasks; however, how they impact interaction performance, e.g., accuracy of target grasp and manipulation, has been less investigated. To fill this gap in knowledge, we conducted an empirical experiment in which thirty participants were recruited to complete a series of target acquisition tasks in a specifically designed VR application. Results show that (1) a bent arm posture resulted in a higher interaction accuracy than a stretched arm posture; (2) a downward arm posture interacted more accurately than an upraised arm posture; since two arms are bilaterally symmetric, (3) either selected arm interacted more accurately on the corresponding side than on the opposite side; and (4) the user-preferred or dominant arm interacted more persistently than the non-dominant one, though two arms generated little difference in interaction accuracy. Implications and suggestions are discussed for designing more efficient and user-satisfying interactive spaces in VR.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Philosophy & Social Science Foundation of Zhejiang Province
State Key Laboratory of Virtual Reality Technology and Systems
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献