Abstract
Fire is defined as an extremely hazardous event, causing a threat to life and health of persons, but also damage to the economic sphere. It has been shown many times that fire can occur anywhere and at any time. In order to minimize the risk of fire manifestations, it is necessary to understand its course. In technical practice, computational models are used to determine the partial manifestations of fire, such as fire spread rate, smoke generation rate in the burning area, formation of toxic burning products, flame height, and others. One of the important characteristics is also the energy balance in the burning area relating to the character of burning material, access of oxygen necessary for exothermic reaction of burning, and reaction of the installed safety devices. In this paper we will point out the fire safety of the building. The FDS (Fire Dynamics Simulator) model is recently used in practice, and its advantage is the possibility to model fire even in large and atypical spaces. The contribution of this paper is the practical application of fire safety of construction using the FDS Model, to reduce the cost of fire safety for the structure being constructed. Attention was paid to evaluating how the heat energy that is released during a fire can be influenced by the installed stable fire-extinguishing equipment, taking into consideration the fire resistance of the building structures.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献