Transient Differentiation Maximum Power Point Tracker (Td-MPPT) for Optimized Tracking under Very Fast-Changing Irradiance: A Theoretical Approach for Mobile PV Applications

Author:

Rico-Camacho Roberto I.,Ricalde Luis J.,Bassam AliORCID,Flota-Bañuelos Manuel I.,Alanis Alma Y.ORCID

Abstract

This work presents an algorithm for Maximum Power Point Tracking (MPPT) that measures transitory states to prevent drift issues and that can reduce steady-state oscillations. The traditional MPPT algorithms can become confused under very fast-changing irradiance and perform tracking in the wrong direction. Errors occur because these algorithms operate under the assumption that power changes in the system are triggered exclusively due to perturbations introduced by them. However, the power increase triggered by irradiance changes could be more significant than those caused by the perturbation effect. The proposed method modifies the Perturb and Observe algorithm (P&O) with an additional measurement stage performed close to the maximum overshoot peak after the perturbation stage. By comparing power changes between three measurement points, the algorithm can accurately identify whether the perturbation was made in the correct direction or not. Furthermore, the algorithm can use additional information to determine if the operating point after the perturbation stage is beyond the maximum power point (MPP) and perturb in the opposite direction for the next iteration. Thus, the proposed algorithm shows reduced steady-state oscillations and improved tracking under fast irradiance changes compared to conventional P&O and P&O with power differences (dP-P&O). The design is validated via simulations using fast-changing irradiance tests based on the standard EN 50530 accelerated by a factor of 100×. The proposed algorithm achieved 99.74% of global efficiency versus 97.4% of the classical P&O and 99.54% of the dP-P&O under the tested conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3