Antibacterial Activity and Biofilm Inhibition of New-Generation Hybrid/Fluoride-Releasing Restorative Materials

Author:

Gurgan Sevil,Vural Uzay Koc,Atalay Cansu,Tassery Herve,Miletic IvanaORCID,Gurpinar Suna Sibel

Abstract

The antibacterial activity, and the effect of the application of additional topical fluoride on the bacterial activity, biofilm formation, and surface roughness of new-generation hybrid/fluoride-releasing materials were investigated. Two hundred and forty specimens were prepared in split Teflon molds (8 × 2 mm) from a resin composite (as negative control: G-aenial A’Chord/GC), Equia Forte HT Fil(GC), Equia Forte HT Fil+Equia Forte Coat, Riva Self-Cure (SDI), Riva Self-Cure+Equia Forte Coat, Zirconomer (Shofu), Beautifil II (Shofu), and Riva Silver (Shofu). Penicillin G,1U was used as positive control. The antibacterial activity was evaluated by the agar diffusion test immediately after the materials set using Streptococcus mutans (S. mutans) and Lactobacillus casei (L. casei), and repeated after application of 0.20% w/w (900 ppm) topical fluoride. The biofilm formation of S. mutans on each material was quantified by crystal violet staining. Surface roughness of the specimens was measured by a profilometer. The data were analyzed by Kruskal–Wallis, Dunn’s, one-way ANOVA, and Tukey’s HSD tests (p < 0.05). None of the tested restorative materials showed antibacterial activity and no inhibition zones were observed after treatment of the restoratives with additional topical fluoride. There were significant differences among the groups in terms of biofilm formation (p < 0.005). Equia Forte HT Fil with and without coating showed the lowest, while Riva self-cure without coating and Zirconomer showed the highest biofilm accumulation. None of the new-generation hybrid/fluoride-releasing materials demonstrated antibacterial activity and additional topical fluoride application did not make any change. Biofilm formation of the tested materials differed. All tested materials showed different surface roughness values (p < 0.005). Characteristics and compositions of the materials seemed to be more effective than the surface roughness.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3