Author:
Ma Buchuan,Qiu Lifang,Liu Beiying,Yu Yue,Liu Ningning,Chen Guimin
Abstract
Flexibility and accuracy are two key aspects of the performances of compliant joints. In order to obtain high flexibility while maintain high accuracy, this paper proposes a design method to improve the tensile stiffness of Lamina Emergent Torsional (LET) joint by utilizing double-laminated material structure. The joint is made of a LET joint and a layer of flexible H18 aluminum foil fixing on it (called double-laminated LET, DL-LET). The kinetostatic model for the joint is given, and the equations needed to calculate the equivalent spring constant are derived. The model is verified using finite element analysis (FEA). The results obtained through two different ways coincide with each other very well. The results show that DL-LET and LET joints have similar bending stiffness, while the tensile stiffness of the DL-LET joint is much larger than that of the LET joint. The results are validated by tensile tests. Finally, to further demonstrate the extension of this idea, a DL-Triple-LET joint is presented and compared to the Triple-LET joint.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science