Abstract
In this study, transition state energy and atomic charge were calculated using the Gaussian 09 program with focus on three-ring PAHs, such as acenaphthylene and anthracene, which are most likely found in contaminated sites. The calculation results were then compared with the radical reaction positions reported in the existing literature. Because the energy difference between the reactant and the transition state according to the reaction position was very small, no distinct correlation was obtained when results were compared with those of the OH radical test findings reported in the literature. It was also found that the charge calculation makes it possible to accurately predict the radical reaction position of the target material. In addition, MK and HLY charges were found to be more accurate than CHelpG charges in predicting the radical reaction positions. The charge calculation can also be applied in predicting radical reaction positions for hazardous materials with different molecular structures.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献