Application of the Theory of Planned Behavior in Autonomous Vehicle-Pedestrian Interaction

Author:

Hafeez FarrukhORCID,Ullah Sheikh Usman,Mas’ud Abdullahi AbubakarORCID,Al-Shammari Saud,Hamid Muhammad,Azhar Ameer

Abstract

Automobile manufacturers, alongside technology providers, researchers, and public agencies, are conducting extensive testing to design autonomous vehicles (AVs) algorithms that will provide a complete understanding of road users, specifically pedestrians. Pedestrian behavior and actions determination are highly unpredictable depending on behavioral beliefs, context, and socio-demographic variables. Context includes everything that potentially affects one’s behavior; in AVs–pedestrian interaction, context may consist of weather conditions, road structure, social factors norms, and traffic volume. These influencing elements, therefore, need to be focused on during the development of pedestrian interaction algorithms. For this purpose, the pedestrian behavior questionnaire for FAVs (PBQF) is designed based on the theory of planned behavior (TPB). A total of almost 1000 voluntary participants completed this multilingual survey. As socio-demographic values and physiological perception varies with local norms, regions, and ethnicity, participants from 27 countries were therefore chosen to account for this variation. One of the key findings of this study is the influence of pedestrian attributes and the context on pedestrian behavior. Pedestrian action cannot be understood without visual observation of the pedestrian themselves and their context. The findings showed that pedestrians build communication with vehicles based on their driving styles. The vehicle’s driving style leads pedestrians to think that the vehicle is human-driven or autonomous. The results also revealed that pedestrians use several cues to show their intention. The general perception of AVs was also analyzed, and the communication between AVs and pedestrians with different displaying options was investigated.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3