Abstract
Recently, using unmanned aerial vehicles (UAVs) to collect information from distributed sensors has become one of the hotspots in the Internet of Things (IoT) research. However, previous studies on the UAV-assisted data acquisition systems focused mainly on shortening the acquisition time, reducing the energy consumption, and increasing the amount of collected data, but it lacked the optimization of data freshness. Moreover, we hope that UAVs can perform long-term data collection tasks in dynamic scenarios within a constantly changing age of information (AoI) and within their own power levels. Therefore, we aim to maximize the quality of service (QoS) based on the freshness of data, while considering the endurance of the UAVs. Since our scenario is not an inertial order decision process with uniform time slots, we first transform the optimization problem into a semi-Markov decision process (SMDP) through modeling, and then we propose a hierarchical deep Q-network (DQN)-based path-planning algorithm to learn the optimal strategy. The simulation results show that the algorithm is better than the benchmark algorithm, and the tradeoff between the system QoS and the safe power state can be achieved by adjusting the parameter βe.
Funder
National Natural Science Foundation of China
Science and Technology MajorIndustrial Project of Liaoning Province
Dalian Science and Technology Innovation Fund
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献