Energy Efficient Framework for a AIoT Cardiac Arrhythmia Detection System Wearable during Sport

Author:

Castillo-Atoche AlejandroORCID,Caamal-Herrera KarimORCID,Atoche-Enseñat RamónORCID,Estrada-López Johan J.ORCID,Vázquez-Castillo JavierORCID,Castillo-Atoche Andrea C.ORCID,Palma-Marrufo OrlandoORCID,Espinoza-Ruiz AdolfoORCID

Abstract

The growing market of wearables is expanding into different areas of application such as devices designed to improve and monitor sport activities. This in turn is pushing research on low-cost, very low-power wearable systems with increased analysis capabilities. This paper proposes integrated energy-aware techniques and a convolutional neural network (CNN) for a cardiac arrhythmia detection system that can be worn during sport training sessions. The dynamic power management strategy (DPMS) is programmed into an ultra-low-power microcontroller, and in combination with a photovoltaic (PV) energy harvesting (EH) circuit, achieves a battery-life extension towards a self-powered operation. The CNN-based analysis filters, scales the image, and using a bicubic technique, interpolates the measurements to subsequently classify the electrocardiogram (ECG) signal into normal and abnormal patterns. Experimental results show that the EH-DPMS achieves an extension in the battery charge for a total of 14.34% more energy available, which represents 12 consecutive workouts of 45 min without the need to manually recharge it. Furthermore, an arrhythmia detection precision of 98.6% is achieved among the experimental sessions using 55,222 images for training the system with the MIT-BIH, QT, and long-term ST databases, and 1320 implemented on a wearable system. Therefore, the proposed wearable system can be used to monitor an athlete’s condition, reducing the risk of abnormal heart conditions during sports activities.

Funder

Technological Institute of Sonora through PROFAPI 2021 projects (Programa de Fomento y Apoyo a Proyectos de Investigación).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3