Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity

Author:

Király Tamás,Primusz Péter,Tóth CsabaORCID

Abstract

The aim of this research study was to analyse the approaches for establishing a spatial model of a radial truck tyre, based on the finite element method, in order to perform a realistic analysis of static as well as dynamic tyre–pavement interactions. A complex rubber tyre model having a large number of elements was formulated combining current state-of-the-art modelling techniques and, from that model, a simplified model having a smaller number of elements was derived. The complex model proved to be useful only for static loading, because of its high computational demand, while the simplified model proved to be also suitable for dynamic modelling. The two tyre models having different numbers of elements were compared by analysing the contact areas and stresses. Our results indicate that the basic idea of not changing material characteristics while simplifying the model, rebuilding only the carcass using composite shell elements, did not prove to be a satisfactory direction. The results given by the simplified model do not describe the behaviour of the radial tyre well but, rather, describe the behaviour of the diagonal tyre, regarding contact areas and stresses. On the contrary, when analysing stresses and strains in the road pavement structure, the two finite element models provided similar results in practice. Based on our comparison calculations, applying the average contact pressure q at analysis points at a 5–8 cm depth, the contact behaviour of the finite element tyre model can be used in any elastic-layer theory-based software.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Use of Linear-Elastic Layered Theory for the Design of CRCP Overlays;McCullough;Highw. Res. Rec.,1969

2. Analysis of Near-Surface Cracking under Critical Loading Conditions Using Uncracked and Cracked Pavement Models

3. Three-Dimensional Finite Element Modeling of Static Tire–Pavement Interaction

4. Numerical Prediction of Three-Dimensional Tire-Pavement Contact Stresses;Hernandez,2017

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3