ErbB4 Is a Potential Key Regulator of the Pathways Activated by NTRK-Fusions in Thyroid Cancer

Author:

Kechin AndreyORCID,Borobova Viktoriya,Kel AlexanderORCID,Ivanov Anatoliy,Filipenko Maxim

Abstract

NTRK gene fusions are drivers of tumorigenesis events that specific Trk-inhibitors can target. Current knowledge of the downstream pathways activated has been previously limited to the pathways of regulator proteins phosphorylated directly by Trk receptors. Here, we aimed to detect genes whose expression is increased in response to the activation of these pathways. We identified and analyzed differentially expressed genes in thyroid cancer samples with NTRK1 or NTRK3 gene fusions, and without any NTRK fusions, versus normal thyroid gland tissues, using data from the Cancer Genome Atlas, the DESeq2 tool, and the Genome Enhancer and geneXplain platforms. Searching for the genes activated only in samples with an NTRK fusion as opposed to those without NTRK fusions, we identified 29 genes involved in nervous system development, including AUTS2, DTNA, ERBB4, FLRT2, FLRT3, RPH3A, and SCN4A. We found that genes regulating the expression of the upregulated genes (i.e., upstream regulators) were enriched in the “signaling by ERBB4” pathway. ERBB4 was also one of three genes encoding master regulators whose expression was increased only in samples with an NTRK fusion. Moreover, the algorithm searching for positive feedback loops for gene promoters and transcription factors (a so-called “walking pathways” algorithm) identified the ErbB4 protein as the key master regulator. ERBB4 upregulation (p-value = 0.004) was confirmed in an independent sample of ETV6-NTRK3-positive FFPE specimens. Thus, ErbB4 is the potential key regulator of the pathways activated by NTRK gene fusions in thyroid cancer. These results are preliminary and require additional biochemical validation.

Funder

Russian Scientific Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3