Abstract
In this paper, a new methodology for the determination of the boundaries between oscillatory and non-oscillatory motion for nonviscously damped nonproportional systems is proposed. It is assumed that the damping forces are expressed as convolution integrals of the velocities via hereditary exponential kernels. Oscillatory motion is directly related to the complex nature of eigensolutions in a frequency domain and, in turn, on the value of the damping parameters. New theoretical results are derived on critical eigenmodes for viscoelastic systems with multiple degrees of freedom, with no restrictions on the number of hereditary kernels. Furthermore, these outcomes enable the construction of a numerical approach to draw the critical curves as solutions of certain parameter-dependent eigenvalue problems. The method is illustrated and validated through two numerical examples, covering discrete and continuous systems.
Funder
Ministerio de Ciencia e Innovación
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献