Machine-Learning Model Prediction of Ionic Liquids Melting Points

Author:

Acar Zafer,Nguyen Phu,Lau Kah ChunORCID

Abstract

Ionic liquids (ILs) have great potential for application in energy storage and conversion devices. They have been identified as promising electrolytes candidates in various battery systems. However, the practical application of many ionic liquids remains limited due to the unfavorable melting points (Tm) which constrain the operating temperatures of the batteries and exhibit unfavorable transport property. To fine tune the Tm of ILs, a systematic study and accurate prediction of Tm of ILs is highly desirable. However, the Tm of an IL can change considerably depending on the molecular structures of the anion and cation and their combination. Thus, a fine control in Tm of ILs can be challenging. In this study, we employed a deep-learning model to predict the Tm of various ILs that consist of different cation and anion classes. Based on this model, a prediction of the melting point of ILs can be made with a reasonably high accuracy, achieving an R2 score of 0.90 with RMSE of ~32 K, and the Tm of ILs are mostly dictated by some important molecular descriptors, which can be used as a set of useful design rules to fine tune the Tm of ILs.

Funder

Research Corporation for Science Advancement

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3