Effect of Fuel Composition on Carbon Black Formation Pathways

Author:

Singh MadhuORCID,Gharpure AkshayORCID,Vander Wal Randy L.ORCID,Kollar James,Herd Charles R.

Abstract

Differences in lamellae length, stacking, and particularly a difference in the core-to-shell radial structure are observed for carbon blacks produced using different feedstocks. Carbon black (CB) produced using a coal tar (CT) feedstock formed particles with amorphous cores exhibiting a sharp transition to extended lamellae oriented about the periphery of the particle. In contrast, the carbon black produced from fluidized catalytic cracker (FCC) decant oil as feedstock formed particles with a single nucleated core possess a rather uniform radial transition—reflecting the presence of ordered, concentric lamellae across most of the particle radius. Minimal disorder was observed in the core while the undulations in perimeter lamellae were fewer. Our interpretation for these structural dissimilarities is premised on differences in fuel composition, specifically component classes as found by saturate, aromatic, resin, asphaltene (SARA) analysis. These in turn lead to variation in the relative rates of particle nucleation and particle growth by pyrolysis products, moderated by temperature. Electron energy loss spectroscopy reveals radial variation in the sp2 content between the different feedstocks consistent with observed nanostructures. Collectively these results are interpreted in terms of an offset in nucleation and growth—dependent upon the relative contributions of feedstock aromatic content and pyrolysis processes to particle nucleation and growth. To further test the postulate of different formation conditions for the two carbon blacks pulsed laser annealing was applied. The high temperature heating accentuated the dissimilarities in nanostructure and chemistry—leading to stark dissimilarities. These differences were also manifested by comparing oxidative reactivity.

Funder

Birla Carbon

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3