Mathematical Models of Diagnostic Information Granules Generated by Scaling Intuitionistic Fuzzy Sets

Author:

Bryniarska AnnaORCID

Abstract

The paper presents a certain class of the mathematical models of diagnostic information granules describing the fuzzy symptoms-faults relationship. A certain fuzzy diagnostic information retrieval system is described as an application of an expert diagnostic system. Symptoms and faults are fuzzy, and with some scaling of the symptom-fault concept pair values. These value pairs can be considered as intuitionistic fuzzy sets for the space of diagnosed objects. In this article, for scaling intuitionistic fuzzy sets (n-ScIFS), the deductive theory is formulated. There the intuitionistic fuzzy sets (IFSs) and the Pythagorean fuzzy sets (PFSs) are generalized to the n-ScIFS objects. The membership and non-membership values, as standard, can be described by the 1:1 scale or the quadratic function scale. However, any power scale n>2 can be used. In this paper, any n-Sc scaling functions retaining the IFSs properties are considered. The n-ScIFS theory introduces a conceptual apparatus analogous to the classical theory of Zadeh fuzzy sets and Yager PFSs, consistently striving, for the first time, to formulate the relational structure of n-ScIFSs as a model of a certain information granule system called here the diagnostic granule system. In addition, power- and linear-repeatable diagnostic granules are defined in the n-ScIFSs structure for serial or parallel diagnosis processes. The information granule base is determined and a diagnostic granule system model produced by this information granule base is shown. Certain algorithms have been given to establish the semantic language of diagnosis describing the system of diagnostic information granules.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Fuzzy sets;Inf. Control,1965

2. Himmelblau, D.M. (1978). Fault Detection and Diagnosis in Chemical and Petrochemical Processes, Elsevier Scientific Pub. Co.

3. A theory of diagnosis from first principles;Artif. Intell.,1987

4. Basseville, M., and Nikiforov, I. (1993). Detection of Abrupt Changes—Theory and Application, Prentice-Hall.

5. Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, CRC Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3