Evaluation of Macrophyte Community Dynamics (2015–2020) in Southern Lake Garda (Italy) from Sentinel-2 Data

Author:

Ghirardi NicolaORCID,Bresciani MarianoORCID,Free Gary,Pinardi MonicaORCID,Bolpagni RossanoORCID,Giardino ClaudiaORCID

Abstract

Macrophytes are of fundamental importance to the functioning of lake ecosystems. They provide structure, habitat, and a food source and are a required component in monitoring programs of lake ecological quality. The key aim of this study is to document the variation in spatial extent and density of macrophytes seasonally between 2015 and 2020 of the Sirmione Peninsula (Lake Garda, Italy), using Sentinel-2 imagery. In addition to this, our results were compared to previous data from imaging spectrometry; individual parameters affecting macrophyte communities were tested, and the possible effect of the COVID-19 lockdown on macrophyte colonization was evaluated. Satellite images allowed the mapping of the spatiotemporal dynamics of submerged rooted macrophytes in order to support monitoring of the shallow water ecosystem under study. Substantial changes were found in both spatial extent and density over the period from 2015 to 2020, particularly in 2019 when there was almost a complete absence of dense macrophytes. Variables found to influence the amount of macrophytes included transparency, chlorophyll–a, water level, winter wave height, and grazing by herbivores. A separate analysis focusing on areas associated with boat transit found a recovery in macrophyte coverage during the period of COVID-19 lockdown. The outcome of the study highlights a decline in the density of the macrophytes and a shift towards deeper areas compared to the situation in 1997. The area examined is part of an internationally important site containing the highest abundance and diversity of overwintering water birds in Italy. Exploiting satellite data at high frequency provided an insight to understand the dynamic changes and interactions with herbivorous birds, environmental factors, and anthropogenic pressures, revealing a delicately balanced and threatened ecosystem.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3