A Novel Pathological Voice Identification Technique through Simulated Cochlear Implant Processing Systems

Author:

Islam RumanaORCID,Abdel-Raheem EsamORCID,Tarique Mohammed

Abstract

This paper presents a pathological voice identification system employing signal processing techniques through cochlear implant models. The fundamentals of the biological process for speech perception are investigated to develop this technique. Two cochlear implant models are considered in this work: one uses a conventional bank of bandpass filters, and the other one uses a bank of optimized gammatone filters. The critical center frequencies of those filters are selected to mimic the human cochlear vibration patterns caused by audio signals. The proposed system processes the speech samples and applies a CNN for final pathological voice identification. The results show that the two proposed models adopting bandpass and gammatone filterbanks can discriminate the pathological voices from healthy ones, resulting in F1 scores of 77.6% and 78.7%, respectively, with speech samples. The obtained results of this work are also compared with those of other related published works.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference63 articles.

1. Hearing, Auditory, and Speech Perception;Rabiner,2011

2. Production and Classification of Speech Sounds;Quateri,2001

3. Perception Space—The Final Frontier

4. A Survey on Signal Processing Based Pathological Voice Detection Techniques

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3