Circular Hazelnut Protection by Lignocellulosic Waste Valorization for Nanopesticides Development

Author:

Schiavi DanieleORCID,Ronchetti Riccardo,Di Lorenzo Veronica,Salustri Mirko,Petrucci Camilla,Vivani RiccardoORCID,Giovagnoli StefanoORCID,Camaioni EmidioORCID,Balestra Giorgio M.ORCID

Abstract

Hazelnut represents a relevant agro-food supply chain in many countries worldwide. Several biological adversities threaten hazelnut cultivation, but among them bacterial blight is one of the most feared and pernicious since its control can be achieved only by prevention through the observation of good agricultural practices and the use of cupric salts. The aim of this work was to evaluate the lignocellulosic biomasses obtained from hazelnut pruning and shelling residues as a renewable source of cellulose nanocrystals and lignin nanoparticles and to investigate their antimicrobial properties against hazelnut bacterial blight. Cellulose nanocrystals were obtained through an acid hydrolysis after a chemical bleaching, while lignin nanoparticles were synthesized by a solvent–antisolvent method after an enzymatic digestion. Both collected nanomaterials were chemically and morphologically characterized before being tested for their in vitro and in vivo antibacterial activity and biocompatibility on hazelnut plants. Results indicated the selected biomasses as a promising starting material for lignocellulosic nanocarriers synthesis, confirming at the same time the potential of cellulose nanocrystals and lignin nanoparticles as innovative tools to control hazelnut bacterial blight infections without showing any detrimental effects on the biological development of treated hazelnut plants.

Funder

Italian Ministry for University and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3