A Novel Approach to the Improvement of the Hydropower Plants Protective Measures—Modelling and Numerical Analyses of the Semi-Pneumatic Surge Tank

Author:

Ilić JovanORCID,Božić IvanORCID,Petković Aleksandar,Karadžić UrošORCID

Abstract

Adopting adequate operational and safety measures is a significant part of the investigation of transient processes of hydropower plants (HPPs), both throughout the design stage of prospective plants and throughout the planning stage of the HPPs envisaged for refurbishment/uprating. One of the surge tank (ST) types, insufficiently researched so far, with a potential positive techno-economical influence, is the semi-pneumatic surge tank (SPST). Since the detailed analyses of SPST have never been performed or published before, the SPSTs have been examined here by presenting theoretical considerations, a newly developed mathematical model and comprehensive numerical simulations. The aim is to improve the performance of the open-air variations of STs. Multiple numerical simulations for a specific case-study HPP have been performed with the conclusions about the peculiarities and benefits of the SPST implementation. Firstly, numerical results for the existing as-built surge tank and corresponding alternative SPST have been compared, in order to verify the developed model. Variations of the main SPST constructive parameters have been analyzed, with the aim to determine the sensitivity of particular influences on transient processes versus its geometry alterations. The conducted analyses show that the SPST application brings HPP transient behaviour improvement compared to open-air ST. Dimensions of the new surge tank with specific aeration orifice could be smaller than the ones previously defined: both the diameter of the optimized upper and lower chamber and the core could be decreased by 20% and 12.5%, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3