Multi-Directional Shape Change Analysis of Biotensegrity Model Mimicking Human Spine Curvature

Author:

Oh Chai Lian,Choong Kok Keong,Nishimura TokuORCID,Kim Jae-Yeol

Abstract

This paper presents a numerical strategy for the shape change analysis of spine biotensegrity models in multi-directional modes. The formulation of incremental equilibrium equations and optimization problem for shape change analysis via the forced elongation of cables to achieve the target coordinates of the monitored nodes of spine biotensegrity models are presented. The distance between the monitored nodes and the target coordinates is chosen as the objective function which is minimized subject to inequality constraints on member axial forces and cable forced elongation. Three spine biotensegrity models were analyzed to validate the effectiveness of the proposed method. The deformation characteristics of the Class-1 four-stage biotensegrity models mimicking the natural curvature of the human spine were investigated. A highly successful rate in achieving the target coordinates was observed in a total of 258 analysis cases, with percentages of 99.9%, 99.9% and 98.9% for shape change analysis involving uni-, bi- and tri-directional modes, respectively. The results show that the spine biotensegrity models have more flexibility in undergoing bending in comparison with axial deformation. With the established shape change strategy, the flexibility and versatility of the movement of spine biotensegrity models can be further studied for potential application in the shape change control of deployable structures together with the use of IoT.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3