A New Numerical Finite Strain Procedure for a Circular Tunnel Excavated in Strain-Softening Rock Masses and Its Engineering Application

Author:

Chen WenboORCID,Zhang Dingli,Fang Qian,Chen Xuanhao,Xu Tong

Abstract

The small strain theory underestimates the self-bearing capacity of rock masses, especially for a soft rock tunnel under high geostress. To perform an efficient and accurate calculation and provide a reference for the stiffness design of a tunnel, the finite strain solution for a circular tunnel in Mohr–Coulomb strain-softening rock masses with a non-associated flow rule was derived as three sets of differential equations under the Lagrangian coordinate, which are in the residue region, the softening region, and the elastic region, respectively. Based on the bisection method, an iteration procedure for solving the finite strain solution was proposed to approximate the boundary condition at infinity, the values of two adjacent boundaries, and the initial values on the excavation boundary. This numerical procedure was verified by comparing with self-similar solutions, recursive solutions, and FLAC simulation results. In the calculation example, the relative error on boundaries can be decreased to less than 10−8 after only 10 times iteration and the time for each calculation is less than 15 s. Applying this procedure on the sensibility analysis and stiffness reliability design for the Zhongyi tunnel, a support stiffness of 4.3 MPa/m is recommended to guarantee a tunnel displacement lower than 0.5 m.

Funder

National Natural Science of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3