Smartphone Sensor-Based Human Locomotion Surveillance System Using Multilayer Perceptron

Author:

Azmat Usman,Ghadi Yazeed YasinORCID,Shloul Tamara al,Alsuhibany Suliman A.,Jalal Ahmad,Park JeongminORCID

Abstract

Applied sensing technology has made it possible for human beings to experience a revolutionary aspect of the science and technology world. Along with many other fields in which this technology is working wonders, human locomotion activity recognition, which finds applications in healthcare, smart homes, life-logging, and many other fields, is also proving to be a landmark. The purpose of this study is to develop a novel model that can robustly handle divergent data that are acquired remotely from various sensors and make an accurate classification of human locomotion activities. The biggest support for remotely sensed human locomotion activity recognition (RS-HLAR) is provided by modern smartphones. In this paper, we propose a robust model for an RS-HLAR that is trained and tested on remotely extracted data from smartphone-embedded sensors. Initially, the system denoises the input data and then performs windowing and segmentation. Then, this preprocessed data goes to the feature extraction module where Parseval’s energy, skewness, kurtosis, Shannon entropy, and statistical features from the time domain and the frequency domain are extracted from it. Advancing further, by using Luca-measure fuzzy entropy (LFE) and Lukasiewicz similarity measure (LS)–based feature selection, the system drops the least-informative features and shrinks the feature set by 25%. In the next step, the Yeo–Johnson power transform is applied, which is a maximum-likelihood-based feature optimization algorithm. The optimized feature set is then forwarded to the multilayer perceptron (MLP) classifier that performs the classification. MLP uses the cross-validation technique for training and testing to generate reliable results. We designed our system while experimenting on three benchmark datasets namely, MobiAct_v2.0, Real-World HAR, and Real-Life HAR. The proposed model outperforms the existing state-of-the-art models by scoring a mean accuracy of 84.49% on MobiAct_v2.0, 94.16% on Real-World HAR, and 95.89% on Real-Life HAR. Although our system can accurately differentiate among similar activities, excessive noise in data and complex activities have shown an inverse effect on its performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Wearable Inertial Sensor Approach for Locomotion and Localization Recognition on Physical Activity;Sensors;2024-01-23

2. Comparative performance of machine learning models for the classification of human gait;Biomedical Physics & Engineering Express;2024-01-04

3. Effective Feature Engineering Technique for Heart Disease Prediction With Machine Learning;IEEE Access;2023

4. Exploiting Human Pose and Scene Information for Interaction Detection;Computers, Materials & Continua;2023

5. Inertial sensor-based movement classification with dimension reduction based on feature aggregation;2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo);2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3