High Definition tDCS Effect on Postural Control in Healthy Individuals: Entropy Analysis of a Crossover Clinical Trial

Author:

Favoretto Diandra B.,Bergonzoni EduardoORCID,Nascimento Diego CarvalhoORCID,Louzada FranciscoORCID,Lemos Tenysson W.ORCID,Batistela Rosangela A.,Moraes RenatoORCID,Leite João P.,Rimoli Brunna P.,Edwards Dylan J.,Edwards Taiza G. S.

Abstract

Objective: Converging evidence supporting an effect of transcranial direct current stimulation (tDCS) on postural control and human verticality perception highlights this strategy as promising for post-stroke rehabilitation. We have previously demonstrated polarity-dependent effects of high-definition tDCS (HD-tDCS) on weight-bearing asymmetry. However, there is no investigation regarding the time-course of effects on postural control induced by HD-tDCS protocols. Thus, we performed a nonlinear time series analysis focusing on the entropy of the ground reaction force as a secondary investigation of our randomized, double-blind, placebo-controlled, crossover clinical trial. Materials and Methods: Twenty healthy right-handed young adults received the following conditions (random order, separate days); anode center HD-tDCS, cathode center HD-tDCS or sham HD-tDCS at 1, 2, and 3 mA over the right temporo-parietal junction (TPJ). Using summarized time series of transfer entropy, we evaluated the exchanging information (causal direction) between both force plates and compared the dose-response across the healthy subjects with a Generalized Linear Hierarchical/Mixed Model (GLMM). Results: We found significant variation during the dynamic information flow (p < 0.001) among the dominant bodyside (and across time). A greater force transfer entropy was observed from the right to the left side during the cathode-center HD-tDCS up to 2 mA, with a causal relationship in the information flow (equilibrium force transfer) from right to left that decreased over time. Conclusions: HD-tDCS intervention induced a dynamic influence over time on postural control entropy. Right hemisphere TPJ stimulation using cathode-center HD-tDCS can induce an asymmetry of body weight distribution towards the ipsilateral side of stimulation. These results support the clinical potential of HD-tDCS for post-stroke rehabilitation.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3