Dynamics of Submersion of a «Diving Buoy» with Account of Hull Compression and Depth-Wise Variation of Water Density

Author:

Rozhdestvensky Kirill

Abstract

The paper employs a simplified approach to modeling of dynamics of submersion of a «diving buoy» subject to a depth-wise water density gradient and experiencing compression of the hull due to action of pressure. The latter effect is accounted for through use of well-known boiler formulae of structural mechanics allowing to analyze behavior of hulls made of different materials. Operation of a piston type buoyancy engine is modeled both for a hypothetical case of instantaneous change of buoyancy and for more practical case of finite buoyancy variation. As the analysis includes both acceleration/deceleration and constant speed modes of motion it enables to evaluate full time of submersion to a design depth. Calculated are the vertical position and speed of the vehicle versus time. Due to the fact that during submersion the growth of density results in deceleration and hull compression causes acceleration, the equilibrium condition is formulated which can be seen as hanging mode in which the buoy performs damped oscillations around a depth of hanging with a frequency depending on rates of density and compression. It is shown that to provide constant speed for a general case of density variation one has to secure a corresponding volume variation of the vehicle or a corresponding increment/decrement of differential buoyancy. At the end of the paper estimates are presented showing how much additional buoyancy should be carried on board to keep constant speed of submersion and how much power is needed for corresponding buoyancy control for a given density profile.

Funder

Ministry of Science and HIgher Education of the RF as part of World-class Research Center program: Advanced Introduction Digital Technologies

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. SLOCUM: A long Endurance Ocean Profiler Powered by Thermocline Driven Engine;Simonetti;Sea Technol.,1998

2. Profiling ALACEs and Other Advances in Autonomous Subsurface Floats

3. Performance of Autonomous Lagrangian Floats

4. The autonomous underwater glider "Spray"

5. Autonomous buoyancy driven underwater gliders;Griffiths,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3