Relational Graph Convolutional Network for Text-Mining-Based Accident Causal Classification

Author:

Chen Zaili,Huang Kai,Wu Li,Zhong Zhenyu,Jiao ZeyuORCID

Abstract

Accident investigation reports are text documents that systematically review and analyze the cause and process of accidents after accidents have occurred and have been widely used in the fields such as transportation, construction and aerospace. With the aid of accident investigation reports, the cause of the accident can be clearly identified, which provides an important basis for accident prevention and reliability assessment. However, since accident record reports are mostly composed of unstructured data such as text, the analysis of accident causes inevitably relies on a lot of expert experience and statistical analyses also require a lot of manual classification. Although, in recent years, with the development of natural language processing technology, there have been many efforts to automatically analyze and classify text. However, the existing methods either rely on large corpus and data preprocessing methods, which are cumbersome, or extract text information based on bidirectional encoder representation from transformers (BERT), but the computational cost is extremely high. These shortcomings make it still a great challenge to automatically analyze accident investigation reports and extract the information therein. To address the aforementioned problems, this study proposes a text-mining-based accident causal classification method based on a relational graph convolutional network (R-GCN) and pre-trained BERT. On the one hand, the proposed method avoids preprocessing such as stop word removal and word segmentation, which not only preserves the information of accident investigation reports to the greatest extent, but also avoids tedious operations. On the other hand, with the help of R-GCN to process the semantic features obtained by BERT representation, the dependence of BERT retraining on computing resources can be avoided.

Funder

GDAS’ Project of Science and Technology Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3