HSVNet: Reconstructing HDR Image from a Single Exposure LDR Image with CNN

Author:

Lee Min JungORCID,Rhee Chi-hyoung,Lee Chang Ha

Abstract

Most photographs are low dynamic range (LDR) images that might not perfectly describe the scene as perceived by humans due to the difference in dynamic ranges between photography and natural scenes. High dynamic range (HDR) images have been used widely to depict the natural scene as accurately as possible. Even though HDR images can be generated by an exposure bracketing method or HDR-supported cameras, most photos are still taken as LDR due to annoyance. In this paper, we propose a method that can produce an HDR image from a single arbitrary exposure LDR image. The proposed method, HSVNet, is a deep learning architecture using a Convolutional Neural Networks (CNN) based U-net. Our model uses the HSV color space that enables the network to identify saturated regions and adaptively focus on crucial components. We generated a paired LDR-HDR image dataset of diverse scenes including under/oversaturated regions for training and testing. We also show the effectiveness of our method through experiments, compared to existing methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enabling Social Robots to Perceive and Join Socially Interacting Groups using F-formation: A Comprehensive Overview;ACM Transactions on Human-Robot Interaction;2024-07-29

2. A Display-Adaptive Pipeline for Dynamic Range Expansion of Standard Dynamic Range Video Content;Applied Sciences;2024-05-11

3. Modeling Camera ISP Pipeline with Deep Learning;2023 31st Signal Processing and Communications Applications Conference (SIU);2023-07-05

4. Low to High Dynamic Image Reconstruction;2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA);2023-06-16

5. Exploiting Light Polarization for Deep HDR Imaging from a Single Exposure;Sensors;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3