Minimizing the Late Work of the Flow Shop Scheduling Problem with a Deep Reinforcement Learning Based Approach

Author:

Dong Zhuoran,Ren Tao,Weng Jiacheng,Qi Fang,Wang Xinyue

Abstract

In the field of industrial manufacturing, assembly line production is the most common production process that can be modeled as a permutation flow shop scheduling problem (PFSP). Minimizing the late work criteria (tasks remaining after due dates arrive) of production planning can effectively reduce production costs and allow for faster product delivery. In this article, a novel learning-based approach is proposed to minimize the late work of the PFSP using deep reinforcement learning (DRL) and graph isomorphism network (GIN), which is an innovative combination of the field of combinatorial optimization and deep learning. The PFSPs are the well-known permutation flow shop problem and each job comes with a release date constraint. In this work, the PFSP is defined as a Markov decision process (MDP) that can be solved by reinforcement learning (RL). A complete graph is introduced for describing the PFSP instance. The proposed policy network combines the graph representation of PFSP and the sequence information of jobs to predict the distribution of candidate jobs. The policy network will be invoked multiple times until a complete sequence is obtained. In order to further improve the quality of the solution obtained by reinforcement learning, an improved iterative greedy (IG) algorithm is proposed to search the solution locally. The experimental results show that the proposed RL and the combined method of RL+IG can obtain better solutions than other excellent heuristic and meta-heuristic algorithms in a short time.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Joint Fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3