Domain Model Based Design of Business Process Architectures

Author:

Gonzalez-Lopez FernandaORCID,Bustos Guillermo,Munoz-Gama JorgeORCID,Sepúlveda MarcosORCID

Abstract

A business process architecture (BPA) model depicts business processes in an organization and their relations. An artifact for generating BPA models is proposed as the outcome of a design science research project. The proposed artifact consists of a method (i.e., a set of concepts, a proposed notation, and a detailed procedure), which is termed the domain-based BPA (dBPA) method due to using domain models as a starting point. The dBPA method tackles issues of currently available approaches: lack of structured inputs, limited consideration of process relations types, and restricted use of industry-standard modeling languages. The paper formalizes the dBPA method and illustrates its application in the manufacturing industry. Evaluation of the dBPA method revealed that practitioners perceived it as useful to achieve its goal with the benefits of being objective and clear and allowing to create complete and understandable BPA models that enable the integration of processes and the software that automates them.

Funder

Agencia Nacional de Investigación y Desarrollo

Pontificia Universidad Católica de Chile under Beca Postdoctorado Escuela de Ingeniería, and by CORFO Engineering 2030

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference70 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing and tailoring business process management methods using the situational method engineering approach;Problems and Perspectives in Management;2023-09-12

2. The Real-Time General Display and Control Platform Designing Method based on Software Product Line;2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C);2022-12

3. Social Work Management Intelligent System Based on Improved Genetic Algorithm;Mobile Information Systems;2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3