Long Term Trends of Base Cation Budgets of Forests in the UK to Inform Sustainable Harvesting Practices

Author:

Vanguelova Elena,Benham Sue,Nisbet Tom

Abstract

There is growing concern in the UK that available base cation pools in soil are declining due to the combined effects of acid deposition and forest harvesting. To help inform the issue, elemental mass balances for calcium (Ca), magnesium (Mg) and potassium (K) were calculated using more than 10-years (10–24 years) of data from the UK’s ICP Forest Intensive Monitoring Network (Level II) of plots, covering a range of soil types and three tree species—oak, Scots pine and Sitka spruce. Out of the ten sites investigated, small negative Ca balances were observed at three sites and negative K balances on two sites, all on acid geology and nutrient poor soils, which were previously heavily acidified due to acid deposition. There is sufficient Ca and K in the soil exchangeable pool to sustain forest growth on these sites, however, if the present rate of Ca and K loss continues forest health and productivity are likely to be threatened within a few forest rotations. Magnesium showed a positive balance at all but one site, partly sustained by marine deposition. Base cation budgets were significantly (p < 0.01) positively related to soil exchangeable cations and soil base saturation status. Six of the sites showed an increasingly statistically significant positive cation balance with time, attributed to a decline in leaching linked to recovery from acidification. This included the three sites with negative Ca balance, although Ca remained in deficit. One site (Alice Holt) exhibited a decreasing cation balance, driven by a continued significant decline in base cation deposition thought to be related to pollutant emission control. The results were used to simulate the impact of different forest biomass harvesting scenarios involving the removal of brown (extracted after needle drop) or green (extracted before needle drop) brash. Podzols and deep peats were found to be the most vulnerable to brash harvesting causing Ca and K imbalance, but problems also occurred on brown earths. Impacts were greatest for the extraction of green brash from higher productivity stands. Base cation balance calculations remain highly uncertain due to the restricted nature of available measurements and wide variation of some estimates, particularly inputs from mineral weathering. More data are required to check and improve model predictions to better guide forest harvesting practice and ensure sustainable forest management.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3