EEG-Based Emotion Recognition Using Deep Learning and M3GP

Author:

Rodriguez Aguiñaga AdrianORCID,Muñoz Delgado LuisORCID,López-López Víctor RaulORCID,Calvillo Téllez AndrésORCID

Abstract

This paper presents the proposal of a method to recognize emotional states through EEG analysis. The novelty of this work lies in its feature improvement strategy, based on multiclass genetic programming with multidimensional populations (M3GP), which builds features by implementing an evolutionary technique that selects, combines, deletes, and constructs the most suitable features to ease the classification process of the learning method. In this way, the problem data can be mapped into a more favorable search space that best defines each class. After implementing the M3GP, the results showed an increment of 14.76% in the recognition rate without changing any settings in the learning method. The tests were performed on a biometric EEG dataset (BED), designed to evoke emotions and record the cerebral cortex’s electrical response; this dataset implements a low cost device to collect the EEG signals, allowing greater viability for the application of the results. The proposed methodology achieves a mean classification rate of 92.1%, and simplifies the feature management process by increasing the separability of the spectral features.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emotion Recognition of Humans using modern technology of AI: A Survey;2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS);2023-11-23

2. Emotion recognition in EEG signals using deep learning methods: A review;Computers in Biology and Medicine;2023-10

3. An efficient deep learning framework for P300 evoked related potential detection in EEG signal;Computer Methods and Programs in Biomedicine;2023-02

4. Domain-Aware Feature Learning with Grammar-Guided Genetic Programming;Lecture Notes in Computer Science;2023

5. Analysis of EEG Signal with Feature and Feature Extraction Techniques for Emotion Recognition Using Deep Learning Techniques;Proceedings of International Conference on Computational Intelligence and Data Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3