Continuous Co-Digestion of Agro-Industrial Mixtures in Laboratory Scale Expanded Granular Sludge Bed Reactors

Author:

Hernández Regalado Roberto Eloy,Häner JurekORCID,Baumkötter Daniel,Wettwer Lukas,Brügging Elmar,Tränckner JensORCID

Abstract

Anaerobic co-digestion often improves the yields and stability of single anaerobic digestion. However, finding the right substrate proportions within mixtures and corresponding optimal operating conditions using a particular reactor technology often presents a challenge. This research investigated the anaerobic digestion of three mixtures from the liquid fractions of piglet manure (PM), cow manure (CWM), starch wastewater (SWW), and sugar beet (SBT) using three 30 L expanded granular sludge bed (EGSB) reactors. The synergistic effects of two three-substrate mixtures (i.e., PM+CWM+SWW and PM+CWM+SBT) were studied using the PM+CWM mixture as a benchmark. These were used to detect the predicted synergistic interactions found in previous batch tests. The methane productivity of both three-substrate mixtures (~1.20 LCH4/Lreact/d) was 2× the productivity of the benchmark mixture (0.64 LCH4/Lreact/d). Furthermore, strong indications of the predicted synergistic effects were found in the three-substrate mixtures, which were also stable due to their appropriate carbon-to-nitrogen ratio values. Moreover, the lowest averaged solid to hydraulic retention times ratio calculated for samples obtained from the top of the reactors was > 1. This confirmed the superior biomass retention capacity of the studied EGSB reactors over typical reactors that have been used in agricultural biogas plants with a continuous stirred tank reactor.

Funder

Federal Ministry of Food and Agriculture

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference65 articles.

1. Improving Biogas Production: Technological Challenges, Alternative Sources, Future Developments;Treichel,2019

2. Industrial Bioprocess Developments for Biogas and Ethanol Production;Rajendran,2015

3. Mathematical Modeling in Anaerobic Digestion (AD)

4. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration

5. Anaerobic co-digestion of sewage sludge and slaughterhouse waste in existing wastewater digesters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3