Effects of Temperature and Strain Rate on the Ductility of an API X65 Grade Steel

Author:

Cortis GabrieleORCID,Nalli Filippo,Sasso MarcoORCID,Cortese Luca,Mancini EdoardoORCID

Abstract

In the last few decades, great effort has been spent on advanced material testing and the development of damage models intended to estimate the ductility and fracture of ductile metals. While most studies focused on static testing are applied at room temperatures only, in this paper, multiaxial tests have been executed to investigate the effects of dynamic action and temperature on the mechanical and fracture behavior of an API X65 steel. To this end, a Split Hopkinson Bar (SHB) facility for dynamic tests, and a uniaxial testing machine equipped with a high-temperature furnace, were used. Numerical simulations of the experiments were setup for calibration and validation purposes. Based on the experimental results, the Johnson–Cook and Zerilli–Armstrong plasticity models were first tuned, resulting in a good experimental–numerical match. Secondly, the triaxiality and Lode angle dependent damage models proposed by Bai–Wierzbicki and Coppola–Cortese were also calibrated. The comparison of the fracture surfaces predicted by the damage models under different loading conditions showed, as expected, an overall significant increase in ductility with temperature; an appreciable increase in ductility was also observed with the increase in strain rate, in the range of low and moderate triaxialities.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite Element Ductile Fracture Simulation of Charpy and Drop Weight Tear Tests for API X52;Theoretical and Applied Fracture Mechanics;2024-10

2. A 90-meter Split Hopkinson Tension–Torsion Bar: Design, Construction and First Tests;Journal of Dynamic Behavior of Materials;2024-07-23

3. True stress-strain identification accounting for anisotropy of sheet metals;IOP Conference Series: Materials Science and Engineering;2024-05-01

4. High Strain Rate Tests by a 90 m Long Tension-Torsion Hopkinson Bar;Conference Proceedings of the Society for Experimental Mechanics Series;2024

5. Influence of thermoelastic boundary conditions on the mechanical strength of cold-rolled silicon steels;Materials Today Communications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3