A New Stochastic Process of Prestack Inversion for Rock Property Estimation
-
Published:2022-02-25
Issue:5
Volume:12
Page:2392
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Yin Long,Zhang Sheng,Xiang Kun,Ma Yongqiang,Ji Yongzhen,Chen Ke,Zheng Dongyu
Abstract
In order to enrich the current prestack stochastic inversion theory, we propose a prestack stochastic inversion method based on adaptive particle swarm optimization combined with Markov chain Monte Carlo (MCMC). The MCMC could provide a stochastic optimization approach, and, with the APSO, have a better performance in global optimization methods. This method uses logging data to define a preprocessed model space. It also uses Bayesian statistics and Markov chains with a state transition matrix to update and evolve each generation population in the data domain, then adaptive particle swarm optimization is used to find the global optimal value in the finite model space. The method overcomes the problem of over-fitting deterministic inversion and improves the efficiency of stochastic inversion. Meanwhile, the fusion of multiple sources of information can reduce the non-uniqueness of solutions and improve the inversion accuracy. We derive the APSO algorithm in detail, give the specific workflow of prestack stochastic inversion, and verify the validity of the inversion theory through the inversion test of two-dimensional prestack data in real areas.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference32 articles.
1. Synthetic sonic logs—a process for stratigraphic interpretation
2. Application of pre-stack seismic fluid identification to carbonate fracture-cavity reservoirs;Xiao;Geophys. Prospect. Pet.,2020
3. Non-linear quadratic programming Bayesian prestack inversion;Yang;Chin. J. Geophys.,2008
4. Study on prestack seismic inversion using markov chain monte carlo;Zhang;Chin. J. Geophys.,2011
5. Bayesian linearized AVO inversion