Modeling and Reasoning of Contexts in Smart Spaces Based on Stochastic Analysis of Sensor Data

Author:

Lee Jae Woong,Helal Abdelsalam

Abstract

In the last decade, smart spaces and automatic systems have gained significant popularity and importance. Moreover, as the COVID-19 pandemic continues, the world is seeking remote intervention applications with autonomous and intelligent capabilities. Context-aware computing (CAC) is a key paradigm that can satisfy this need. A CAC-enabled system recognizes humans’ status and situation and provides proper services without requiring manual participation or extra control by humans. However, CAC is insufficient to achieve full automaticity since it needs manual modeling and configuration of context. To achieve full automation, a method is needed to automate the modeling and reasoning of contexts in smart spaces. In this paper, we propose a method that consists of two phases: the first is to instantiate and generate a context model based on data that were previously observed in the smart space, and the second is to discern a present context and predict the next context based on dynamic changes (e.g., user behavior and interaction with the smart space). In our previous work, we defined “context” as a meaningful and descriptive state of a smart space, in which relevant activities and movements of human residents are consecutively performed. The methods proposed in this paper, which is based on stochastic analysis, utilize the same definition, and enable us to infer context from sensor datasets collected from a smart space. By utilizing three statistical techniques, including a conditional probability table (CPT), K-means clustering, and principal component analysis (PCA), we are able to automatically infer the sequence of context transitions that matches the space–state changes (the dynamic changes) in the smart space. Once the contexts are obtained, they are used as references when the present context needs to discover the next context. This will provide the piece missing in traditional CAC, which will enable the creation of fully automated smart-space applications. To this end, we developed a method to reason the current state space by applying Euclidean distance and cosine similarity. In this paper, we first reconsolidate our context models, and then we introduce the proposed modeling and reasoning methods. Through experimental validation in a real-world smart space, we show how consistently the approach can correctly reason contexts.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Sustainable Smart Home and Home Automation: Big Data Analytics Approach;Int. J. Smart Home,2016

2. Ernst, E., Ostermann, K., and Cook, W.R. (2006, January 11–13). A virtual class calculus. Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, SC, USA.

3. Bühler, D., Küchlin, W., Grubler, G., and Nusser, G. (2000, January 3–7). The Virtual Automation Lab-Web based teaching of automation engineering concepts. Proceedings of the Proceedings of IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, Edinburgh, UK.

4. Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities;IEEE Access,2017

5. Smart manufacturing: Past research, present findings, and future directions;Int. J. Precis. Eng. Manuf. Green Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3