Abstract
Fisheye lens cameras are widely used in such applications where a large field of view (FOV) is necessary. A large FOV can provide an enhanced understanding of the surrounding environment and can be an effective solution for detecting the objects in automotive applications. However, this comes with the cost of strong radial distortions and irregular size of objects depending on the location in an image. Therefore, we propose a new fisheye image warping method called Expandable Spherical Projection to expand the center and boundary regions in which smaller objects are mostly located. The proposed method produces undistorted objects especially in the image boundary and a less unwanted background in the bounding boxes. Additionally, we propose three multi-scale feature concatenation methods and provide the analysis of the influence from the three concatenation methods in a real-time object detector. Multiple fisheye image datasets are employed to demonstrate the effectiveness of the proposed projection and feature concatenation methods. From the experimental results, we find that the proposed Expandable Spherical projection and the LCat feature concatenation yield the best AP performance, which is up to 4.7% improvement compared to the original fisheye image datasets and the baseline model.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献