Affiliation:
1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
2. School of Artificial Intelligence, Jilin University, Changchun 130012, China
Abstract
Intelligent Traditional Chinese Medicine can provide people with a convenient way to participate in daily health care. The ease of acceptance of Traditional Chinese Medicine is also a major advantage in promoting health management. In Traditional Chinese Medicine, tongue imaging is an important step in the examination process. The segmentation and processing of the tongue image directly affects the results of intelligent Traditional Chinese Medicine diagnosis. As intelligent Traditional Chinese Medicine continues to develop, remote diagnosis and patient participation will play important roles. Smartphone sensor cameras can provide irreplaceable data collection capabilities in enhancing interaction in smart Traditional Chinese Medicine. However, these factors lead to differences in the size and quality of the captured images due to factors such as differences in shooting equipment, professionalism of the photographer, and the subject’s cooperation. Most current tongue image segmentation algorithms are based on data collected by professional tongue diagnosis instruments in standard environments, and are not able to demonstrate the tongue image segmentation effect in complex environments. Therefore, we propose a segmentation algorithm for tongue images collected in complex multi-device and multi-user environments. We use convolutional attention and extend state space models to the 2D environment in the encoder. Then, cross-layer connection fusion is used in the decoder part to fuse shallow texture and deep semantic features. Through segmentation experiments on tongue image datasets collected by patients and doctors in real-world settings, our algorithm significantly improves segmentation performance and accuracy.
Funder
National Natural Science Foundation of China
Ministry of Science and Technology of the People’s Republic of China
Department of Science and Technology of Jilin Province, China
Education Department of Jilin Province, China
Ministry of Education of the People’s Republic of China
Reference50 articles.
1. IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art;Albahri;J. Netw. Comput. Appl.,2021
2. Lee, J.A., Choi, M., Lee, S.A., and Jiang, N. (2018). Effective behavioral intervention strategies using mobile health applications for chronic disease management: A systematic review. BMC Med. Inform. Decis. Mak., 18.
3. Majumder, S., and Deen, M.J. (2019). Smartphone sensors for health monitoring and diagnosis. Sensors, 19.
4. Traditional chinese medicine;Tang;Lancet,2008
5. (2024, March 25). World Health Organization World Health Assembly Update. Available online: https://www.who.int/news-room/detail/25-05-2019-world-health-assembly-update.