S5Utis: Structured State-Space Sequence SegNeXt UNet-like Tongue Image Segmentation in Traditional Chinese Medicine

Author:

Song Donglei1ORCID,Zhang Hongda2,Shi Lida2ORCID,Xu Hao1,Xu Ying1

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China

2. School of Artificial Intelligence, Jilin University, Changchun 130012, China

Abstract

Intelligent Traditional Chinese Medicine can provide people with a convenient way to participate in daily health care. The ease of acceptance of Traditional Chinese Medicine is also a major advantage in promoting health management. In Traditional Chinese Medicine, tongue imaging is an important step in the examination process. The segmentation and processing of the tongue image directly affects the results of intelligent Traditional Chinese Medicine diagnosis. As intelligent Traditional Chinese Medicine continues to develop, remote diagnosis and patient participation will play important roles. Smartphone sensor cameras can provide irreplaceable data collection capabilities in enhancing interaction in smart Traditional Chinese Medicine. However, these factors lead to differences in the size and quality of the captured images due to factors such as differences in shooting equipment, professionalism of the photographer, and the subject’s cooperation. Most current tongue image segmentation algorithms are based on data collected by professional tongue diagnosis instruments in standard environments, and are not able to demonstrate the tongue image segmentation effect in complex environments. Therefore, we propose a segmentation algorithm for tongue images collected in complex multi-device and multi-user environments. We use convolutional attention and extend state space models to the 2D environment in the encoder. Then, cross-layer connection fusion is used in the decoder part to fuse shallow texture and deep semantic features. Through segmentation experiments on tongue image datasets collected by patients and doctors in real-world settings, our algorithm significantly improves segmentation performance and accuracy.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People’s Republic of China

Department of Science and Technology of Jilin Province, China

Education Department of Jilin Province, China

Ministry of Education of the People’s Republic of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3