Abstract
The Resistance-Harary index of a connected graph G is defined as R H ( G ) = ∑ { u , v } ⊆ V ( G ) 1 r ( u , v ) , where r ( u , v ) is the resistance distance between vertices u and v in G. A graph G is called a unicyclic graph if it contains exactly one cycle and a fully loaded unicyclic graph is a unicyclic graph that no vertex with degree less than three in its unique cycle. Let U ( n ) and U ( n ) be the set of unicyclic graphs and fully loaded unicyclic graphs of order n, respectively. In this paper, we determine the graphs of U ( n ) with second-largest Resistance-Harary index and determine the graphs of U ( n ) with largest Resistance-Harary index.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献