Designing a Robust Controller Using SMC and Fuzzy Artificial Organic Networks for Brushed DC Motors

Author:

Ponce PedroORCID,Rosales J. AntonioORCID,Molina Arturo,Ponce HiramORCID,MacCleery Brian

Abstract

Electric direct-current (DC) drives based on DC motor are extremely important in the manufacturing process, so it must be crucial to increase their performance when they are working on load disturbances or the DC motor’s parameters change. Usually, several load torque suddenly appears when electric drives are operating in a speed closed-loop, so robust controllers are required to keep the speed high-performance. One of the most well-known robust strategies is the sliding mode controller (SMC), which works under discontinue operation. This controller can handle disturbances and variations in the plant’s parameters, so the controller has robust performance. Nevertheless, it has some disadvantages (chattering). Therefore, this paper proposed a fuzzy logic controller (FLC) that includes an artificial organic network for adjusting the command signal of the SMC. The proposed controller gives a smooth signal that decrements the chattering in the SMC. The stability condition that is based on Lyapunov of the DC motor is driven is evaluated; besides, the stability margins are calculated. The proposed controller is designed using co-simulation and a real testbed since co-simulation is an extremely useful tool in academia and industry allows to move from co-simulation to real implementation in short period of time. Moreover, there are several universities and industries that adopt co-simulation as the main step to design prototypes. Thus, engineering students and designers are able to achieve excellent results when they design rapid and functional prototypes. For instance, co-simulation based on Multisim leads to design directly printed circuit boards so engineering students or designers could swiftly get an experimental DC drive. The experimental results using this platform show excellent DC-drive performance when the load torque disturbances are suddenly applied to the system. As a result, the proposed controller based on fuzzy artificial organic and SMC allows for adjusting the command signal that improves the dynamic response in DC drives. The experimental response using the sliding-mode controller with fuzzy artificial organic networks is compared against an auto-tuning, Proportional-Integral-Derivative (PID), which is a conventional controller. The PID controller is the most implemented controller in several industries, so this proposal can contribute to improving manufacturing applications, such as micro-computer numerical control (CNC) machines. Moreover, the proposed robust controller achieves a superior-speed response under the whole tested scenarios. Finally, the presented design methodology based on co-simulation could be used by universities and industry for validating and implementing advanced control systems in DC drives.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3