Detailed Office Building Energy Information Based on In Situ Measurements

Author:

Song Seung-Yeong,Jin Hye-SunORCID,Ha Soo-Yeon,Kim Sung-Im,Kim You-Jeong,Lee Soo-Jin,Suh In-Ae

Abstract

Energy consumption in the building sector has been continuously increasing, and energy conservation in this sector has become critical for achieving the national goal of reducing greenhouse gas emissions. In South Korea, information on energy sources (electricity, gas, district heating, etc.) is provided, but detailed energy use information, such as space heating, space cooling, domestic hot water (DHW) and lighting, is insufficient to establish a specific action plan for energy savings. Energy use information by end-use can be acquired through actual measurements in close proximity to actual energy use. This information reflects the effects of complex elements such as building operations and residential characteristics, but it is also insufficient. This study presents statistical data on energy use intensities (EUIs) and greenhouse-gas-emission intensities by end-use, derived by measured data collected from 48 sample office buildings in representative city from May 2017 to April 2018, and compares those with the U.S. commercial building energy consumption survey (CBECS) 2012 report. The average site EUIs by end-use were in the following order: space heating > electric appliances (typical floors) > space cooling > lighting > air movement > DHW > vertical transportation > city water supply. With regard to the average primary EUIs by end-use, the magnitude relationship between electric appliances (typical floors) and space heating was opposite that of the average site EUIs. Vertical transportation and DHW exhibited almost the same average greenhouse-gas-emission intensities as those of the average annual primary EUIs. The average site EUIs in the CBECS 2012 data were slightly different from those in this study: electric appliances, etc. > space heating > air movement > lighting > space cooling > DHW. The number of office buildings monitored in this study increased until 2019 (the number of total samples: 85), and the intensity data by end-use will be brought up to date through continuous measurement.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. Examples of measurement methods for providing detailed information on energy consumption by end-use in office buildings;Jin;J. Archit. Inst. Korea Struct. Constr.,2017

2. Methods for Classification, Measurement and Normalization of Energy Consumption by End-Use in Office Buildings,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3