Correlation between Boron–Silicon Bonding Coordination, Oxygen Complexes and Electrical Properties for n-Type c-Si Solar Cell Applications

Author:

Park Cheolmin,Shim Gyeongbae,Balaji NagarajanORCID,Park Jinjoo,Yi Junsin

Abstract

In this paper, the relationship between coordination complexes and electrical properties according to the bonding structure of boron and silicon was analyzed to optimize the p–n junction quality for high-efficiency n-type crystalline solar cells. The p+ emitter layer was formed using boron tribromide (BBr3). The etch-back process was carried out with HF-HNO3-CH3COOH solution to vary the sheet resistance (Rsheet). The correlation between boron–silicon bonding in coordination complexes and electrical properties according to the Rsheet was analyzed. Changes in the boron coordination complex and boron–oxygen (B–O) bonding in the p+ diffused layer were measured through X-ray photoelectron spectroscopy (XPS). The correlation between electrical properties, such as minority carrier lifetime (τeff), implied open-circuit voltage (iVoc) and saturation current density (J0), according to the change in element bonding, was analyzed. For the interstitial defect, the boron ratio was over 1.8 and the iVoc exceeded 660 mV. Additional gains of 670 and 680 mV were obtained for the passivation layer AlOx/SiNx stack and SiO2/SiNx stack, respectively. The blue response of the optimized p+ was analyzed through spectral response measurements. The optimized solar cell parameters were incorporated into the TCAD tool, and the loss analysis was studied by varying the key parameters to improve the conversion efficiency over 23%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3